

Solution-1

The image shows a code editor window titled "code.py" and a terminal window titled "CircuitPython REPL".

code.py:

```
code.py
3 import busio
4 from adafruit_cricket import cricket
5 import adafruit_us100
6
7 # ----- Ultrasonic Setup -----
8 uart = busio.UART(board.TX, board.RX, baudrate=9600)
9 us100 = adafruit_us100.US100(uart)
10
11 ss = cricket.seesaw
12
13
14 while True:
15     distance = us100.distance
16     print("dist", distance)
17     time.sleep(0.1)
```

CircuitPython REPL:

```
CircuitPython REPL
dist 3.9
dist 5.3
dist 5.3
dist 2.9
dist 5.3
```

Code Explanation:

```
import time
import board
import busio
from adafruit_cricket import cricket
import adafruit_us100
```

- `time` → allows delays and timing operations (used for `sleep()`).
- `board` → provides pin names (like `board.TX`, `board.RX`) for the connected hardware.
- `busio` → used to create communication buses like `UART`, `I2C`, or `SPI`.

adafruit_crickit → library for controlling the Crickit robotics board.

- adafruit_us100 → library for controlling the US100 ultrasonic sensor.

```
# ----- Ultrasonic Setup -----  
uart = busio.UART(board.TX, board.RX, baudrate=9600)  
us100 = adafruit_us100.US100(uart)
```

- *busio.UART(board.TX, board.RX, baudrate=9600)*
Creates a **UART serial connection** between the board and the US100 sensor.
- TX = transmit pin
- RX = receive pin
- baudrate=9600 = communication speed (must match the sensor's default rate)
- *us100 = adafruit_us100.US100(uart)*
Creates an instance of the US100 sensor, allowing you to read distance and temperature data.

```
ss = crickit.seesaw
```

- Initializes the **Seesaw** chip on the Crickit board.
(Even though not directly used here, it's often needed when integrating with Crickit.)

```
while True:  
    distance = us100.distance  
    print("dist", distance)  
    time.sleep(0.1)
```

while True: → creates an infinite loop that continuously reads sensor data.

- us100.distance → reads the **distance in centimeters** from the ultrasonic sensor.
- print("dist", distance) → displays the distance value in the serial console.
- time.sleep(0.1) → waits for 0.1 seconds before the next reading (to avoid flooding the output).